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Abstract

A submerged fluid-filled circular cylindrical shell containing a rigid coaxial cylindrical core is considered. The

nonstationary dynamics of such a system subjected to an external spherical shock wave is examined, with particular

emphasis on the influence that a core has on the stress–strain state of the shell. A complete diffraction–radiation

problem is considered, and an analytical–numerical solution of the problem is obtained. The influence of several

different cores is analyzed, and a comparison to the case of a shell without a core is presented. Physical phenomena

occurring in the shell and in the internal fluid are studied in detail. Two- and three-dimensional graphics is used to

illustrate and analyze the nonstationary dynamics of the stress–strain state. The possibility of using a rigid core as a

measure of constructive safety improvement is discussed.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the dynamics of a circular cylindrical shell structure filled with and submerged into fluid, and subjected

to a hydrodynamic shock wave, is of considerable interest to naval architecture and ocean engineering. The primary

goal here is the stress analysis of offshore structures and submersible marine vehicles experiencing underwater

explosions. The topic appears to be of theoretical interest as well because of many challenges, both mathematical and

experimental, that one faces studying this complex fluid–structure interaction process.

The present paper examines the dynamics of a submerged fluid-filled shell when an extra structural element, namely a

rigid circular cylindrical structure of a smaller radius placed coaxially within the shell, is added to the system. The

reason for undertaking rigorous study of this particular design is as follows. It has recently been shown (Iakovlev,

2002a) that wave phenomena play a determining role in the stress state of a submerged fluid-filled circular cylindrical

shell. In particular, it was found that the maximum stress in the structure can be caused not only by the direct action of

the incident shock wave or elastic waves propagating in the shell, but also by hydrodynamic waves propagating in the

internal fluid. In the light of these results, it is reasonable to expect that, as long as the wave pattern in the internal fluid

is changed, the stress state of the shell will change as well. Although it is not clear at this point if these changes will lead

to significantly lower stresses, verification of this assumption is of considerable practical interest. If such a reduction of

stresses does occur, a number of applications aiming at constructive safety improvement will easily follow.
e front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of the core �a ¼ ar�10
bmn harmonic of the normal incident velocity �bmn ¼ bmnc�1e

�Bmn Laplace transform of �bmn

ce sound speed in the external fluid �ce ¼ 1

ci sound speed in the internal fluid �ci ¼ cic
�1
e

cs sound speed in the shell material �cs ¼ csc
�1
e

cij
mn coefficient of the integro-differential system for the displacement harmonics

Dmn an arbitrary function

E Young’s modulus of the shell material �E ¼ Er�1e c�2e

Ek kinetic energy per unit area of the shell �Ek ¼ Ekr�1e c�2e r�30
Ep strain energy per unit area of the shell �Ep ¼ Epr�1e c�2e r�30
Fmn an arbitrary function

Gmn an arbitrary function

h0 thickness of the shell �h0 ¼ h0r
�1
0

H Heaviside unit step function

In modified Bessel function of the first kind of order n

J1 Bessel function of the first kind of order n

k0 coefficient in the shell equations �k0 ¼ k0r
�1
0

Kn modified Bessel function of the second kind of order n

L axial dimension of the affected region of the shell/fluids �L ¼ Lr�10
m a summation index
~m a temporary variable

n a summation index

p total hydrodynamic pressure on the shell surface �p ¼ pr�1e c�2e

pmn harmonic of the total hydrodynamic pressure on the shell surface �pmn ¼ pmnr
�1
e c�2e

p0 incident pressure on the shell surface �p0 ¼ p0r
�1
e c�2e

p0mn harmonic of the incident pressure on the shell surface �p0mn ¼ p0mnr
�1
e c�2e

pa pressure in the front of the shock wave at the moment it reaches the shell �pa ¼ par
�1
e c�2e

pd diffraction pressure on the shell surface �pd ¼ pdr
�1
e c�2e

pd
mn harmonic of the diffraction pressure on the shell surface �pd

mn ¼ pd
mnr

�1
e c�2e

pe total pressure in the external fluid �pe ¼ per
�1
e c�2e

pi total pressure in the internal fluid �pi ¼ pir
�1
e c�2e

pe
r external radiation pressure on the shell surface �pe

r ¼ pe
rr

�1
e c�2e

pr;e
mn harmonic of the external radiation pressure on the shell surface �pr;e

mn ¼ pr;e
mnr

�1
e c�2e

pi
r internal radiation pressure on the shell surface �pi

r ¼ pi
rr

�1
e c�2e

pr;i
mn harmonic of the internal radiation pressure on the shell surface �pr;i

mn ¼ pr;i
mnr

�1
e c�2e

r radial coordinate of the cylindrical coordinate system �r ¼ rr�10
r0 radius of the middle surface of the shell �r0 ¼ 1

R radial coordinate of the spherical coordinate system centered at the source of the shock wave �R ¼ Rr�10
R0 distance between the source of the shock wave and the axis of the shell �R0 ¼ R0r�10
R1 distance between the source of the shock wave and a point on the shell surface �R1 ¼ R1r�10
s Laplace transform variable

SR shock wave source stand-off �SR ¼ SRr�10
t time �t ¼ t cer�10

t1c time of arrival of the first (‘primary’) core-reflected wave at the head point of the shell �t1c ¼ t1ccer�10

t2c time of arrival of the second core-reflected wave at the head point of the shell �t2c ¼ t2ccer�10
u longitudinal displacement of the middle surface of the shell �u ¼ ur�10
umn harmonic of the longitudinal displacement �umn ¼ umnr�10
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v transverse displacement of the middle surface of the shell �v ¼ vr�10
vmn harmonic of the transverse displacement �vmn ¼ vmnr�10
w normal displacement of the middle surface of the shell �w ¼ wr�10
�W Laplace transform of �w

wmn harmonic of the normal displacement �wmn ¼ wmnr�10
�W mn Laplace transform of �wmn

x axial coordinate of the cylindrical coordinate system �x ¼ xr�10
bm a temporary variable

g reciprocal of the dimensionless sound speed in the shell material

Dmn a temporary variable

�1 longitudinal strain in the middle surface of the shell ��1 ¼ �1
�2 transverse strain in the middle surface of the shell ��2 ¼ �2
y angular coordinate of the cylindrical coordinate system

k1 longitudinal change of curvature of the middle surface of the shell �k1 ¼ k1r0
k2 transverse change of curvature of the middle surface of the shell �k2 ¼ k2r0
l exponential decay constant �l ¼ lcer�10
n Poisson’s ratio of the shell material

x integration variable for convolution and convolution-like integrals

re density of the exterior fluid �re ¼ 1

ri density of the interior fluid �ri ¼ rir
�1
e

rs density of the shell material �rs ¼ rsr
�1
e

s11 longitudinal stress �s11 ¼ s11r�1e c�2e

s12 shear stress �s12 ¼ s12r�1e c�2e

s22 transverse stress �s22 ¼ s22r�1e c�2e

s011 membrane component of the longitudinal stress �s011 ¼ s011r
�1
e c�2e

s012 membrane component of the shear stress �s012 ¼ s012r
�1
e c�2e

s022 membrane component of the transverse stress �s022 ¼ s022r
�1
e c�2e

sb
11 bending component of the longitudinal stress �sb

11 ¼ sb
11r

�1
e c�2e

sb
12 bending component of the shear stress �sb

12 ¼ sb
12r

�1
e c�2e

sb
22 bending component of the transverse stress �sb

22 ¼ sb
22r

�1
e c�2e

t torsion of the middle surface of the shell �t ¼ tr0
f total fluid velocity potential �f ¼ fc�1e r�10
f0 fluid velocity potential in the incident wave �f0 ¼ f0c

�1
e r�10

fd fluid velocity potential in the diffracted wave �fd ¼ fdc�1e r�10
�Fd Laplace transform of �fd

�F
d

mn harmonic of the Laplace transform of �fd

fe fluid velocity potential in the external fluid �fe ¼ fec�1e r�10
�Fe Laplace transform of �fe

�F
e

mn harmonic of the Laplace transform of �fe

fi fluid velocity potential in the internal fluid �fi ¼ fic
�1
e r�10

�Fi Laplace transform of �fi

�F
i

mn harmonic of the Laplace transform of �fi

fe
r fluid velocity potential in the external radiated wave �f

e

r ¼ fe
rc�1e r�10

�F
e

r Laplace transform of �f
e

r

�F
r;e
mn harmonic of the Laplace transform of �f

e

r

fi
r fluid velocity potential in the internal radiated wave �f

i

r ¼ fi
rc

�1
e r�10

�F
i

r Laplace transform of �f
i

r

�F
r;i
mn harmonic of the Laplace transform of �f

i

r

w a temporary variable
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ce
n two-dimensional ‘exterior’ response functions

ci
n two-dimensional ‘interior’ response functions

Ce
n Laplace transform of ce

n

Ci
n Laplace transform of ci

n

ce
mn three-dimensional ‘exterior’ response functions

ci
mn three-dimensional ‘interior’ response functions

Ce
mn Laplace transform of ce

mn

Ci
mn Laplace transform of ci

mn

O shear strain in the middle surface of the shell �O ¼ O
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Since we are interested in practically feasible design ideas, the discussion can be narrowed down to a more specific

question: is there any constructively reasonable way to eliminate (or at least reduce) the destructive influence of the

wave effects in the internal fluid? In the present paper, a rigid coaxial core is proposed as a design advancement aiming

to change the wave pattern in the internal fluid. Such an idea would be relatively easy to implement in engineering

practice, should it be found that the stress reduction is substantial.

Structural dynamics of circular cylindrical shells subjected to hydrodynamic shock waves was first addressed in order

to provide naval architects with information about the dynamic response of submersible vehicles to underwater

explosions and acoustic pulses. An empty submerged shell was considered as a model [classical works by Mindlin and

Bleich (1953) and Haywood (1958) can be mentioned here]. In the following three decades, submerged and/or fluid-

filled shells were studied very extensively, and various types of incident shock loads were analyzed [e.g. Geers (1969),

Huang and Wang (1970) and Carpenter and Berger (1972)]. However, it seems that the structural dynamics of a shell,

especially three-dimensional stress–strain states, were not addressed consistently enough, partly because of the limited

computational capabilities available at that time. The majority of the solutions proposed were either analytical or

semianalytical, often involving numerical inversion of the Laplace, Hankel, or Fourier transforms, or their

combinations, which imposed certain limitations on extensive simulations of the structural dynamics. A few more

references to the work published in the 1950s–1970s can be found in Iakovlev (2002a).

Nowadays, much more consistent and detailed study of the fluid–structure interaction is being undertaken to analyze

the nonstationary dynamics of cylindrical shells experiencing shock loads. The majority of publications employ various

numerical techniques, and make use of both commercial codes and algorithms specifically developed for particular

problems. For example, Wardlaw and Luton (2000) and Chambers et al. (2001) considered an explosion in a fluid-filled

cylinder, while Aanhold et al. (1998) examined the interaction of a shock wave with a floating vessel. Doubly asymptotic

approximations are also extensively employed to study fluid-filled and/or submerged structures [e.g., Geers and Zhang,

1994a,b]. Ofengeim and Drikakis (1997) and Drikakis et al. (1997) addressed the interaction between a shock wave and

a rigid cylinder in the gas dynamics context. In general, it seems that quite often the authors tend to pay more attention

to hydrodynamic aspects of the interaction, such as cavitation and gas bubble dynamics. In some works, the normal

displacements and/or velocities of a structure are addressed, but this analysis is mostly related to the discussion of the

hydrodynamic phenomena.

There are also numerous works studying acoustic phenomena associated with shell–fluid interaction. Recent

publications do tend to address rather complex systems [e.g. a stiffened shell was considered by Baillard et al. (2000),

and a finite shell with hemispherical endcaps was addressed by Touraine et al. (2000)]. Although these works have some

common aspects with the problems discussed here, the difference is quite significant. Specifically, the interaction with

shock waves is an essentially nonstationary process, and this is what makes the results obtained for acoustical problems

of little use when it comes to geometrically similar structures but nonstationary loading.

Thus, it seems that the interaction between a circular cylindrical shell and a shock wave is quite well studied and

understood. However, the stress–strain states of complex shell systems appear to be understudied, at least in the context

of structural safety. The present paper offers such a study, focusing on the detailed analysis of the stress–strain state of a

fluid-filled submerged elastic circular cylindrical shell with a rigid coaxial core when the system is experiencing a

spherical hydrodynamic shock wave.

We should mention that from a constructive point of view, a slightly different idea may appear to be more feasible.

Specifically, a ‘secondary’ circular cylindrical shell placed coaxially with the ‘primary’ one seems to be a more natural

constructive advancement as opposed to the rigid core. Therefore, one may question the priority of the study presented

here over the analysis of a two-shell system.
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Certainly, dynamic analysis of a two-shell system is of considerable interest. However, the physics of the

fluid–structure interaction is much more complicated in that case. Unlike a rigid core, the deformations of the inner

shell will induce radiation pressures which will contribute to the total hydrodynamic field. As a result, the stress–strain

state of the outer shell will change as well. Since in this case there are up to five media with different properties (the

outer shell, the inner shell, the external fluid, the fluid in between the shells, and possibly the fluid inside the inner shell),

it becomes extremely difficult to predict the dynamics of the stress–strain state relying only on ‘engineering common

sense’. A detailed study based on a three-dimensional mathematical model that incorporates all the media is needed.

It is quite apparent that such a model will be considerably more complex than the one addressed in this paper, even

though the models would have a lot in common (very similar geometries, identical loading etc.). Therefore, aside from

the practical and theoretical interest that a solid-core problem generates on its own, one can view the analysis presented

here as the first step towards understanding the nonstationary dynamics of fluid-interacting shell systems that are

significantly more structurally complex. The author intends to consider a two-shell problem in the foreseeable future.
2. Mathematical formulation

We consider a thin elastic circular cylindrical shell of radius r0 and thickness h0 filled with linearly compressible

inviscid fluid and submerged into another such fluid. The density of and the sound speed in the internal and external

fluids are ri, ci, and re, ce, respectively. The material of the shell is isotropic, and is characterized by the density rs,

sound speed cs, Young’s modulus E, and Poisson’s ratio n. The thickness-to-radius ratio is assumed to be small enough
so that thin-shell theory can be applied. The normal (radial), transverse (azimuthal), and longitudinal (axial)

displacements of the middle surface of the shell are w, v, and u, respectively. A rigid circular cylinder of radius aor0 is

placed coaxially within the shell. The system is subjected to a spherical shock wave with the source located at the

distance R0 from the axis of the shell. A cylindrical coordinate system based on the axis of the shell is considered. Fig. 1

shows the geometry of the problem.

The fluids are governed by the wave equations

r2fe ¼
1

c2e

@2fe

@t2
ð1Þ

and

r2fi ¼
1

c2i

@2fi

@t2
; ð2Þ

where fe and fi are the fluid velocity potentials in the external and internal fluids, respectively.

The hydrodynamic pressures in the external and internal fluids, pe and pi, respectively, are

pe ¼ �re

@fe

@t
and pi ¼ �ri

@fi

@t
: ð3Þ

The strain energy per unit area of the shell Ep is given by (Love, 1927)

Ep ¼
Eh0

2ð1� n2Þ
�21 þ �22 þ 2n�1�2 þ

1

2
ð1� nÞO2 þ k2

0ðk
2
1 þ k22 þ 2nk1k2 þ 2ð1� nÞt2Þ

� �
; ð4Þ

where

�1 ¼
@u

@x
; �2 ¼

1

r0

@v

@y
� w

� �
; O ¼

@v

@x
þ

1

r0

@u

@y
; ð5Þ

k1 ¼
@2w

@x2
; k2 ¼

1

r20

@2w

@y2
þ

@v

@y

� �
; t ¼

1

r0

@2w

@y@x
þ

@v

@x

� �
; ð6Þ

and k2
0 ¼ h20=12. Note that, because we consider an inward normal for the ‘elastic’ part of the problem, the signs in the

K2 and t equations for �2 K2 and f differ from those in Love’s work.

Eq. (4), along with the expression for the kinetic energy per unit area of the shell Ek,

Ek ¼
1

2
rsh0

@u

@t

� �2

þ
@v

@t

� �2

þ
@w

@t

� �2
( )

; ð7Þ

is used to derive the equations of shell dynamics using Hamilton’s principle.
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Fig. 1. Geometry of the problem.

S. Iakovlev / Journal of Fluids and Structures 19 (2004) 957–984962
The shell surface is subjected to a hydrodynamic load p consisting of the incident pressure p0, diffraction pressure pd ,

external radiation pressure pe
r , and internal radiation pressure pi

r,

p ¼ p0 þ pd þ pe
r þ pi

r: ð8Þ

The total fluid potential is

f ¼ f0 þ fd þ fe
r þ fi

r; ð9Þ
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where f0, fd , f
e
r , and fi

r are the potentials in the incident shock wave, diffracted wave, external radiated wave, and

internal radiated wave, respectively. Then, the surface pressure components are

p0 ¼ �re

@f0

@t

����
r¼r0

; pd ¼ �re

@fd

@t

����
r¼r0

; pe
r ¼ �re

@fe
r

@t

����
r¼r0

; ð10Þ

and

pi
r ¼ �ri

@fi
r

@t

����
r¼r0

: ð11Þ

The fluid velocity potential in a spherical step-exponential shock wave in the introduced cylindrical coordinates is

f0 ¼ �
lpaSR

reR
fe�ðt�ðR�R0þr0Þc

�1
e Þl�1 � 1gHðt � ðR � R0 þ r0Þc

�1
e Þ; ð12Þ

where l is the decay constant, pa is the pressure in the front of the shock wave when it reaches the shell, SR ¼ R0 � r0
is the shock wave source stand off (the distance between the source and the surface of the shell),

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ x2 þ r2 � 2R0r cos y

q
is the distance between the source of the shock wave and the point ðx; r; yÞ in the

cylindrical coordinates, and HðxÞ is the Heaviside unit step function

HðtÞ ¼
1; tX0;

0; to0:

�
ð13Þ

We assume that t ¼ 0 at the moment when the wave front first reaches the shell. The parameters l and pa vary

depending on R0 and a few other factors [e.g., Cole (1948)].

The corresponding pressure on the shell surface is given by

p0 ¼
paSR

R1
e�ðt�ðR1�R0þr0Þc

�1
e Þl�1Hðt � ðR1 � R0 þ r0Þc

�1
e Þ; ð14Þ

where R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ x2 þ r20 � 2R0r0 cos y

q
is the distance between the source of the shock wave and the point ðx; yÞ on

the shell surface.

Due to the very high-frequency nature of the interaction, it appears to be more convenient to deal with dimensionless

variables, at least when it comes to a dynamic analysis. We normalize all the variables of the problem to r0, ce, and re, as

outlined in the Nomenclature (a bar above a dimensionless variable distinguishes it from its dimensional counterpart).

In particular, for such a choice of dimensionless variables it takes two dimensionless time units for a shock wave to

move over the shell. From here on, dimensionless variables are used throughout the paper, with the analysis of the stress

state being the only exception (stresses expressed in Pascals seem to be easier to relate to engineering practice than their

dimensionless counterparts).

Before we move on to the formulation of the boundary and initial conditions, we re-state the problem in the

introduced dimensionless form. The dimensionless wave equations are

r2 �fe ¼
@2 �fe

@�t2
ð15Þ

and

r2 �fi ¼
1

�c2i

@2 �fi

@�t2
; ð16Þ

and the dimensionless hydrodynamic pressures are given by

�pe ¼ �
@ �fe

@�t
and �pi ¼ � �ri

@ �fi

@�t
: ð17Þ

The dimensionless potential and kinetic energies are

�Ep ¼
�E �h0

2ð1� n2Þ
��21 þ ��22 þ 2n��1��2 þ

1

2
ð1� nÞ �O

2
�

þ �k
2

0ð �k
2
1 þ �k22 þ 2n �k1 �k2 þ 2ð1� nÞ�t2Þ

o
ð18Þ
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and

�Ek ¼
1

2
�rs
�h0

@ �u

@�t

� �2

þ
@�v

@�t

� �2

þ
@ �w

@�t

� �2
( )

; ð19Þ

respectively, where

��1 ¼
@ �u

@ �x
; ��2 ¼

@�v

@y
� �w; �O ¼

@�v

@ �x
þ

@ �u

@y
; ð20Þ

�k1 ¼
@2 �w

@ �x2
; �k2 ¼

@2 �w

@y2
þ

@�v

@y
; �t ¼

@2 �w

@y@ �x
þ

@�v

@ �x
: ð21Þ

The total dimensionless fluid velocity potential and hydrodynamic pressure on the shell surface are

�p ¼ �p0 þ �pd þ �pe
r þ �pi

r; ð22Þ

�f ¼ �f0 þ
�fd þ �f

e

r þ
�f

i

r; ð23Þ

where

�p0 ¼ �
@ �f0

@�t

�����
�r¼1

; �pd ¼ �
@ �fd

@�t

�����
�r¼1

; �pe
r ¼ �

@ �f
e

r

@�t

�����
�r¼1

; ð24Þ

and

�pi
r ¼ � �ri

@ �f
i

r

@�t

�����
�r¼1

: ð25Þ

Finally, we state the boundary and initial conditions, and this completes the formulation of the problem. Shell

dynamics is coupled to the dynamics of the fluids through the boundary conditions on the shell surface

@ �f
e

r

@�r

�����
�r¼1

¼ �
@ �w

@�t
ð26Þ

and

@ �f
i

r

@�r

�����
�r¼1

¼ �
@ �w

@�t
: ð27Þ

For the diffraction pressure we have

@ �fd

@�r

�����
�r¼1

¼ �
@ �f0

@�r

�����
�r¼1

; ð28Þ

and also

ð �fd þ �f
e

rÞ�!0 when �r ! 1: ð29Þ

The boundary condition on the surface of the core is

@ �f
i

r

@�r

�����
�r¼ �a

¼ 0: ð30Þ

To formulate the boundary conditions with respect to �x, we make use of the fact that the hydrodynamic waves in the
fluids and elastic waves in the shell both have a finite velocity of propagation. Therefore, we can introduce a large

enough parameter L and state the boundary conditions at �x ¼ � �L for the displacements as

@ �u

@ �x

����
�x¼� �L

¼ 0; �vj �x¼� �L ¼ 0; �wj �x¼� �L ¼ 0;
@2 �w

@ �x2
�x¼� �L

¼ 0; ð31Þ

as well as zero boundary conditions for all potential components. We assume that the displacements and potentials are

periodic with respect to y, and we also assume zero initial conditions.
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3. Hydrodynamics

We approach all the components of the hydrodynamic pressure with a uniform methodology. First, we apply the

Laplace transform with respect to time to the wave equations written in the cylindrical coordinates to arrive at

@2 �Fe

@�r2
þ
1

�r

@ �Fe

@�r
þ

@2 �Fe

@ �x2
þ

1

�r2
@2 �Fe

@y2
� s2 �Fe ¼ 0 ð32Þ

and

@2 �Fi

@�r2
þ
1

�r

@ �Fi

@�r
þ
@2 �Fi

@ �x2
þ

1

�r2
@2 �Fi

@y2
�

s2

�c2i
�Fi ¼ 0: ð33Þ

Here �Fe and �Fi stand for the Laplace transforms of �fe and
�fi, respectively, and s is the transform variable.

Second, we apply separation of variables to the spatial coordinates. Making use of the boundary conditions for

x and y, and the radial boundary condition at infinity (29), we obtain the solutions of (32) and (33) as

�F
e

mn ¼ DmnKnð�rbmðsÞÞ cosð ~m �xÞ cosðnyÞ ð34Þ

and

�F
i

mn ¼ fFmnInð�rbmðs�c
�1
i ÞÞ þ GmnKnð�rbmðs�c

�1
i ÞÞg cosð ~m �xÞ cosðnyÞ; ð35Þ

respectively. Here m ¼ 0; 1; :::, n ¼ 0; 1; :::, ~m ¼ ð2m þ 1Þpð2 �LÞ�1, bmðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ s2

p
, In and Kn are the modified

Bessel functions of order n of the first and second kind, respectively, and Dmn, Fmn, and Gmn are arbitrary functions

of s.

Next, we determine the coefficients Dmn, Fmn and Gmn for each potential component. We expand the normal

displacement �w into a double series

�w ¼
X1
m¼0

X1
n¼0

�wmn
�ðtÞ cosð ~m �xÞ cosðnyÞ; ð36Þ

as we do the incident pressure and the incident normal velocity on the shell surface,

�p0 ¼
X1
m¼0

X1
n¼0

�p0mn
�ðtÞ cosð ~m �xÞ cosðnyÞ ð37Þ

and

@ �f0

@�r

�����
�r¼1

¼
X1
m¼0

X1
n¼0

�bmn
�ðtÞ cosð ~m �xÞ cosðnyÞ; ð38Þ

respectively, where

�p0mn ¼
Dmn

p �L

Z p

0

Z �L

0

�p0 cosð ~m �xÞ cosðnyÞd �xdy; ð39Þ

�bmn ¼
Dmn

p �L

Z p

0

Z �L

0

@ �f0

@�r

�����
�r¼1

cosð ~m �xÞ cosðnyÞd �xdy; ð40Þ

and Dm0 ¼ 2, Dmn ¼ 4; n40. Then, using the boundary conditions (26)–(28) and (30), we obtain the transforms of the

harmonics of the potential components on the shell surface

�F
d

mn ¼ �BmnðsÞCe
mnðsÞ cosð ~m �xÞ cosðnyÞ; ð41Þ

�F
r;e
mn ¼ s �W mnðsÞCe

mnðsÞ cosð ~m �xÞ cosðnyÞ; ð42Þ

and

�F
r;i
mn ¼ �s �W mnðsÞCi

mnðs�c
�1
i Þ cosð ~m �xÞ cosðnyÞ; ð43Þ
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where �Bmn and �W mn are the transforms of �bmn and �wmn, respectively, and ce
mn and ci

mn are the ‘response functions’ of the

problem with the Laplace transforms given by

Ce
mnðsÞ ¼ �

KnðbmðsÞÞ

bmðsÞK
0
nðbmðsÞÞ

ð44Þ

and

Ci
mnðsÞ ¼

1

bmðsÞ

fI0nðabmðsÞÞKnðbmðsÞÞ �K0
nðabmðsÞÞInðbmðsÞÞg

fK0
nðbmðsÞÞI

0
nðabmðsÞÞ � I0nðbmðsÞÞK

0
nðabmðsÞÞg

; ð45Þ

respectively. Recalling (3) and using some theorems related to the Laplace transform, the components of the pressure on

the shell surface can now be obtained

�pd ¼
X1
m¼0

X1
n¼0

�pd
mn

�ðtÞ cosð ~m �xÞ cosðnyÞ; ð46Þ

�pe
r ¼

X1
m¼0

X1
n¼0

�pr;e
mn

�ðtÞ cosð ~m �xÞ cosðnyÞ; ð47Þ

and

�pi
r ¼

X1
m¼0

X1
n¼0

�pr;i
mn

�ðtÞ cosð ~m �xÞ cosðnyÞ; ð48Þ

where

�pd
mnð�tÞ ¼ � �bmnð�tÞ �

Z �t

0

�bmnðxÞ
dce

mn

dx
ð�t � xÞdx; ð49Þ

�pr;e
mnð�tÞ ¼ �

Z �t

0

d2 �wmnðxÞ

dx2
ce

mnð�t � xÞdx; ð50Þ

and

�pr;i
mnð�tÞ ¼ �ri �ci

Z �t

0

d2 �wmnðxÞ

dx2
ci

mnð�cið�t � xÞÞdx: ð51Þ

Hence, the total hydrodynamic pressure on the shell surface is

�p ¼
X1
m¼0

X1
n¼0

�pmn cosð ~m �xÞ cosðnyÞ; ð52Þ

where

�pmn ¼ �p0mn þ �pd
mn þ �pr;e

mn � �pr;i
mn: ð53Þ

Note that because we consider an outward normal for both internal and external fluids, the internal radiation pressure

is included in (53) with the opposite sign.

So far, the total pressure has been expressed in terms of the known pressure and fluid velocity in the shock wave, the

response functions ce
mn and ci

mn, and the normal displacement of the shell surface �w. Now we will concentrate on the

computation of the response functions.

It should be noted that the response functions only depend on the geometry of the problem, and not on the physical

properties of the system. Therefore, once calculated, they can be used for any other problem with the same geometry,

which makes the proposed approach quite attractive from the computational point of view. Indeed, when one is using

Eqs. (49)–(53) to compute the hydrodynamic pressure for several systems with different parameters, a time-consuming

numerical inversion of the Laplace transform is avoided. Thus, the methodology used here appears to have some

advantages over the approaches where the displacements are obtained in the form of Laplace transforms, and the

inversion is carried out at the very end.
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To compute the response functions, we first express ce
mn and ci

mn in terms of the response functions of the related

two-dimensional problem (i.e. the same system subjected to a plane shock wave), ce
n and ci

n, respectively,

ce
mn ¼ ce

n
�ðtÞ � ~m

Z �t

0

ce
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2 � x2

q� �
J1ð ~mxÞdx; ð54Þ

and

ci
mn ¼ ci

n
�ðtÞ � ~m

Z �t

0

ci
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2 � x2

q� �
J1ð ~mxÞdx; ð55Þ

where the Laplace transforms of ce
n and ci

n are given by

Ce
nðsÞ ¼ �

KnðsÞ

sK0
nðsÞ

; ð56Þ

Ci
nðsÞ ¼

1

s

fI0nðasÞKnðsÞ �K0
nðasÞInðsÞg

fK0
nðsÞI

0
nðasÞ � I0nðsÞK

0
nðasÞg

; ð57Þ

respectively, and J1 is the Bessel function of the first order.

The functions ce
n were introduced in the 1960s [e.g., Geers (1969)], and later appeared in many works examining the

dynamics of cylindrical structures interacting with fluid. The inverse transform of (56) can be obtained both analytically

and numerically. One of the possible approaches to the numerical inversion of (56) is discussed in Iakovlev (2001),

including analysis of the errors associated with the inversion algorithm used. Fig. 2 shows ce
n for various n.

A similar numerical procedure was used to compute ci
n. Figs. 3 and 4 show ci

1 for a few different values of �a, as well
as ci

1 for the same system without a core. The solid dots in these figures show the values of the functions at the points of

finite discontinuity where all four functions have values equal to half of the sum of the right- and left-side limits at those

points. See Iakovlev (2002b) for more information about this phenomenon, and also for a detailed investigation of the

response functions for a fluid-filled shell without a core.

First of all, one can see that the functions ci
n are much more complex and have significantly less regular behavior than

the functions ce
n. This is due to the fact that the physics of the interaction between the shell and the internal fluid is

much more complex than that of the interaction with the external fluid, even if there is no core (multiple reflections of

the internal hydrodynamic waves from the shell and/or core are responsible for this complexity). It should be

particularly emphasized that, in the case of a shell with a core, the response functions only have points of finite
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Fig. 2. The functions ce
n for various n.
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discontinuity, and no singular points, whereas the response functions for the shell without a core have discontinuities of

both types. This happens because the singular points represent the ‘focusing’ of the internal hydrodynamic wave at
�r ¼ 0 (on the axis of the shell), whereas when a core is placed coaxially within the shell, the focusing simply does not

occur. Apparently, the finite discontinuities represent the reflections of hydrodynamic waves from the internal surfaces.

Since there is one more internal surface when a core is present, the response functions for such a system have a larger

number of points of finite discontinuity.

The timing of the occurrence of finite discontinuities is different for different cores, and the intervals between

discontinuities are equal to the time necessary for a wave in the internal fluid to travel from the shell surface to the core
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and back when the unit sound speed in the internal fluid is assumed, that is 1.90, 1.50, and 1.00 for the cores with the

radii �a ¼ 0:10, 0.25, and 0.50, respectively. In other words, the larger the radius of the core, the less time it takes for a

wave to travel from the shell to the core, and therefore the more complex the wave pattern in the internal fluid is, and

the more points of finite discontinuity the functions ci
n have. Note that in the beginning of the process (i.e. when the

shell does not ‘know’ about the core) all four functions are identical.

Generally speaking, the study of the response functions for the considered class of fluid–structure interaction

problems appears to be of theoretical interest since the functions seem to capture the most important physical features

of the interaction. They also seem to increase the efficiency of numerical computations, and make the corresponding

algorithms significantly more versatile.
4. Structural dynamics

We are looking for the displacements in the form of double Fourier series as

�u ¼
X1
m¼0

X1
n¼0

�umn
�ðtÞ sinð ~m �xÞ cosðnyÞ; ð58Þ

�v ¼
X1
m¼0

X1
n¼0

�vmn
�ðtÞ cosð ~m �xÞ sinðnyÞ; ð59Þ

and

�w ¼
X1
m¼0

X1
n¼0

�wmn
�ðtÞ cosð ~m �xÞ cosðnyÞ: ð60Þ

The stresses in the shell are given by [e.g., Ugural (1981)]

s11 ¼ s011 þ sb
11; ð61Þ

s22 ¼ s022 þ sb
22; ð62Þ

and

s12 ¼ s012 þ sb
12; ð63Þ

where s11, s22, and s12 are the longitudinal (axial), transverse (azimuthal), and shear stresses, respectively. The

membrane stress components s011, s
0
22, and s012 are given by

s011 ¼
E

1� n2
@u

@x
þ

n
r0

@v

@y
�

n
r0

w

� �
; ð64Þ

s022 ¼
E

1� n2
1

r0

@v

@y
�

w

r0
þ n

@u

@x

� �
; ð65Þ

and

s012 ¼
E

2ð1þ nÞ
@v

@x
þ

1

r0

@u

@y

� �
; ð66Þ

while the bending components sb
11, s

b
22, and sb

12 are

sb
11 ¼

zE

1� n2
@2w

@x2
þ

n
r20

@v

@y
þ

n
r20

@2w

@y2

� �
; ð67Þ

sb
22 ¼

zE

1� n2
1

r20

@v

@y
þ

1

r20

@2w

@y2
þ n

@2w

@x2

� �
; ð68Þ

and

sb
12 ¼

zE

r0ð1þ nÞ
@v

@x
þ

@2w

@x@y

� �
; ð69Þ
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where z is the distance from the middle surface which varies from �h0=2 on the inner surface to h0=2 on the outer one.
Note that Ugural (1981) considers z to be �h0=2 on the outer surface and h0=2 on the inner one, which is why in his

work the bending terms are included in the equations for the compound stresses with a minus sign.

Stresses (61)–(63) can easily be expanded into double series similar to (58)–(60), and as long as the time-dependent

displacement coefficients �umn, �vmn, and �wmn are known, the three-dimensional stress–strain state of the shell can be

simulated.

Before we proceed to the analysis of the stress–strain state, an important question has to be answered. Namely, how

significant is the contribution of the bending terms? For any particular x and y, the bending terms reach their maxima

on either the inner or outer surface of the shell (the absolute maxima are considered here),

sb;max
11 ¼

h0E

2ð1� n2Þ
@2w

@x2
þ

n
r20

@v

@y
þ

n
r20

@2w

@y2

����
����; ð70Þ

sb;max
22 ¼

h0E

2ð1� n2Þ
1

r20

@v

@y
þ

1

r20

@2w

@y2
þ n

@2w

@x2

����
����; ð71Þ

sb;max
12 ¼

h0E

2r0ð1þ nÞ
@v

@x
þ

@2w

@x@y

����
����; ð72Þ

and so we have to compare (70)–(72) to the corresponding membrane stresses.

A preliminary analysis was carried out, and it appears that the maximum magnitudes of the bending components do

not exceed 30% of those of the corresponding membrane components. It also seems that the bending terms exhibit

somewhat ‘irregular’ behavior, that is high-magnitude bending stresses appear to be localized in certain regions, being

considerably lower in the rest of the shell. Therefore, analyzing the bending terms in the context of the compound

stresses, it appears that we are observing local second-order ‘additions’ to the membrane stresses provided by the

bending terms rather than a ‘steady’ contribution that significantly changes the stress state. Thus, for the system

considered here, it seems reasonable to say that the membrane stresses alone capture the most important dynamic

features of the stress state quite well.

To thoroughly understand the dynamics of the bending stresses, much more detailed study is needed, which is beyond

the scope of this paper. For our purposes, we will assume that

s11 �
E

1� n2
@u

@x
þ

n
r0

@v

@y
�

n
r0

w

� �
; ð73Þ

s22 �
E

1� n2
1

r0

@v

@y
�

w

r0
þ n

@u

@x

� �
; ð74Þ

and

s12 �
E

2ð1þ nÞ
@v

@x
þ

1

r0

@u

@y

� �
: ð75Þ

We should also mention that there are certain purely computational difficulties associated with evaluation of the

bending terms. For example, Eqs. (67)–(69) involve second derivatives of the displacements, which translates into high-

magnitude coefficients in the corresponding double series when m and/or n are large. As a result, the convergence of

these series is much worse than that of the series describing the membrane stresses. This imposes considerably stricter

requirements on the number of terms that have to be kept in the series to obtain a reasonably good approximation.

Computationally this is quite a significant disadvantage, and another reason to limit the study to the membrane stresses

only.

As we have mentioned before, stresses are the only variables in the paper that are analyzed in the dimensional form

(even though as functions of dimensionless time and space coordinates).

Assuming the series representation of displacements (58)–(60), we derive the equations of shell dynamics. We first

rewrite (20) and (21), omitting the sine and cosine factors, in terms of �umn sinð ~m �xÞ cosðnyÞ, �vmn cosð ~m �xÞ sinðnyÞ, and
�wmn cosð ~m �xÞ cosðnyÞ

��1 ¼ �umn ~m; ��2 ¼ �vmnn � �wmn; �O ¼ ��vmn ~m � �umnn; ð76Þ

�k1 ¼ � �wmn ~m; �k2 ¼ � �wmnn2 þ �vmnn; �t ¼ �wmn ~mn � �vmn ~m: ð77Þ
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Next, we express the strain and kinetic energy (18) and (19) in terms of the harmonics of the displacements ( �umn, �vmn,

and �wmn), integrate these expressions over the shell surface, and apply Hamilton’s principle to obtain the following

system of integro-differential equations for each combination of m and n, m ¼ 0; 1; :::, and n ¼ 0; 1; ::::

g2
d2 �umn

d�t2
þ c11mn �umn þ c12mn �vmn þ c13mn �wmn ¼ 0;

g2
d2 �vmn

d�t2
þ c21mn �umn þ c22mn �vmn þ c23mn �wmn ¼ 0;

g2
d2 �wmn

d�t2
þ c31mn �umn þ c32mn �vmn þ c33mn �wmn ¼ w �pmn; ð78Þ

where

c11mn ¼
1� n
2

n2 þ ~m2; c12mn ¼ c21mn ¼
1þ n
2

~mn;

c13mn ¼ c31mn ¼ �n ~m;

c22mn ¼
1� n
2

~m2 þ n2 þ �k
2

0ðn
2 þ ð1� nÞ ~m2Þ;

c23mn ¼ c32mn ¼ �n � �k
2

0ðn
3 þ n ~m2Þ;

c33mn ¼ 1þ �k
2

0ð ~m
2 þ n2Þ2; ð79Þ

g ¼ �c�1s , w ¼ ð �rs �c
2
s
�h0Þ

�1, all initial conditions are zero, and the pressure �pmn is given by (53).

Systems (78) were approached numerically (finite differences), and the functions �umn, �vmn and �wmn were computed for

m ¼ 0; :::; 200 and n ¼ 0; :::; 40.
5. Results and discussion

We consider a steel shell (the density of and the sound speed in the shell material are 7800 kg/m3 and 5000m/s,

respectively), with thickness-to-radius ratio h0=r0 ¼ 0:01 (r0 ¼ 1m and h0 ¼ 0:01m), submerged into water (the density

and sound speed are 1000 kg/m3 and 1400m/s, respectively) and filled with oil (900 kg/m3 and 1350m/s). The

stress–strain state of the shell is analyzed for three different cores with the radii a ¼ 0:10m ( �a ¼ 0:10), a ¼ 0:25m
( �a ¼ 0:25), and a ¼ 0:50m ( �a ¼ 0:50), which we refer to as the small-, medium-, and large-radius cores, respectively. The
stress–strain state of the core-containing shell is then compared to that of the same shell without a core. We analyze

the influence of a spherical shock wave with a ‘distant’ source, i.e. we assume that the distance between the source and

the axis of the shell is equal to five radii of the shell ( �R0 ¼ 5:0). The parameters l and pa for such a shock wave were

estimated to be 0.0001314 s and 7.9MPa, respectively [e.g., Cole (1948)].

For brevity, from here on we will refer to the point �x ¼ 0, y ¼ 0 (the point that first comes into contact with a shock

wave) as the head point of the shell, and to the point �x ¼ 0, y ¼ p (the point that is last reached by a shock wave) as the
tail point.

We first focus on the normal displacement �w. Fig. 5 shows �w at the head point. It seems that it makes more sense to

analyze �w= �h0 rather than �w. In particular, in this case it is very easy to see if the displacements obtained are in agreement
with the assumptions of the linear theory of shells used (we will see that indeed they are for the considered shock wave).

Since both w and h0 are normalized to r0, it does not matter which form of w=h0, dimensional or dimensionless, we are

considering. One can see that in the beginning of the interaction the displacements are identical for all four systems. The

core starts to affect �w when the hydrodynamic wave in the internal fluid originated at �t � 0 at the head point reflects

from the core and comes back to the head point. This occurs at �t � 1:0, 1:5, and 1:9 for �a ¼ 0:50, 0:25, and 0:10,
respectively. The maximum displacement differs insignificantly between the shell without a core and the shells with the

small- and medium-radius cores, and is about 15% lower for the shell with the large-radius core. In spite of the fact that

the displacements have the same order of magnitude, the sudden change of �w caused by the presence of a core leads to

quite different dynamic features of the process. This difference is particularly noticeable for the time derivatives of �w.
Note that we can easily see if the numerically observed times of arrival of the first (‘primary’) core-reflected wave to

the head point agree with the times one can predict theoretically knowing the sound speed in the shell material. Namely,

if we adopt the notation t1c for the time it takes for the hydrodynamic wave in the internal fluid to reach the core and for
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the reflected wave to come back to the head point, we will have

�t1c ¼
2ð1� �aÞ

�ci

; ð80Þ

which gives us 1:04, 1:56, and 1:87 for �a ¼ 0:50, �a ¼ 0:25, and �a ¼ 0:10, respectively. As one can see, these ‘theoretically
predicted’ times agree very well with the numerically observed ones. As far as one is concerned about the validity of the

solution proposed here, this is a very comforting result.

We can also predict the arrival time t2c of the second core-reflected wave,

�t2c ¼
4ð1� �aÞ

�ci

; ð81Þ

which yields 2:07, 3:10, and 3:73 for �a ¼ 0:50, �a ¼ 0:25, and �a ¼ 0:10, respectively. The influence of this wave on �w is

most pronounced for the large-radius core, and one can notice a low-magnitude peak of �w at the time which is very

close to the one predicted by Eq. (81). In the cases of the small- and medium-radius cores the influence of the secondary

wave is harder to see, at least from the plots presented here.

Fig. 6 shows the normal displacements at the tail point. The dynamics of �w is very similar for the shell without a core

and for the shell with the small- and medium-radius cores, whereas for the large-radius core �w has a distinct peak at
�t � 2:3. After �t � 2:5, the dynamics of �w is very similar for all four systems, although the magnitudes are different.

To allow a better understanding of the dynamics of the interaction as well as the influence of a core, Figs. 7 and 8

show series of three-dimensional ‘snapshots’ of the shell with and without a core (only �w is shown). One can see how the

first core-reflected wave reaches the head point and originates the ‘secondary’ wave of �w (which is not present in the no-

core case). Note that the displacements shown were significantly enhanced to make the plots more illustrative. As one

can see from Figs. 5 and 6, the magnitude of the actual �w is always less than the thickness of the shell. Note also that �w
at the head and tail points has different signs, i.e. the surface of the shell bends inside at the head point and outside at

the tail one.

Now we turn to the analysis of the stress state. Our primary focus will be on the transverse stress, since it appears to

be the major contributor to the stress state. Although there are zones where the axial and/or shear stress locally prevail,

the absolute maximum of the transverse stress is always significantly higher. More specifically, the absolute maxima of

the axial and shear stresses usually do not exceed 50% and 30% of the absolute maximum of the transverse stress,

respectively.
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We start from the analysis of the transverse stress at the tail point (Fig. 9). Note that here we plot dimensional stresses

versus dimensionless time/spatial coordinates. The stress has two distinct peaks of approximately the same magnitude,

the first one (negative) at �t � 1 caused by the elastic waves propagating in the shell, and the second one (positive) at
�t � 2:2 caused by the hydrodynamic wave propagating in the internal fluid. The stresses in the shell without a core and

in the shells with the small- and medium-radius cores are very similar throughout the interaction. The stress in the shell

with the large-radius core starts to differ at �t � 1:8, i.e. when the elastic wave originated in the proximity of the head

point by the core-reflected hydrodynamic wave at �t � 1 arrives at the tail point. At �t � 2 the hydrodynamic wave in the

internal fluid originated at the head point in the beginning of the interaction arrives at the tail point as well. However,

unlike in the cases of the small- and medium-radius cores, the large-radius core occupies a significant part of the internal

fluid volume, and it substantially changes the internal hydrodynamic pattern. In particular, the core noticeably

‘dissipates’ the hydrodynamic wave, and the wave does not have the same effect on the stress state as it did for the shells

with the small- and medium-radius cores, and for the shell without a core. As a result, there is a considerable (about

35%) reduction of the second peak of the stress. Note that the second peak is tensile, whereas the first one is

compressive. For �tX2:5 the stresses are approximately the same for all four systems, although for the large-radius core
the stress has two secondary small-magnitude peaks, apparently caused by multiple reflections of the internal

hydrodynamic waves from the core.

Fig. 10 shows the transverse stress s22 at the head point. As was the case with the displacements, during the initial

period of the interaction the stresses are the same for all four systems. They start to differ when the core-reflected

hydrodynamic wave reaches the head point. This wave does not have any significant influence on the stress for the

small-radius core, causes noticeable but short-time peak in the case of the medium-radius core, and leads to a high-

magnitude and relatively long-lasting peak in the case of the large-radius core (�t � 1:4). The stresses have a second peak
at �t � 1:9 caused by the superposition of elastic waves that travel around the shell once and return to the head point.

After a short transitional period when the dynamic patterns of the stress are similar for all four systems, the stress in the

shell without a core experiences the third major peak (a positive one, �t � 3:1). This time it is caused by the superposition
of the elastic waves originating at the tail point at �t � 2:2. The stresses in the shell without a core and in the shell with

the small-radius core are almost identical. The peak for the shell with the medium-radius core is slightly shifted towards

the larger times and its magnitude is about 20% lower (the core is large enough to affect, although not significantly, the

distribution of the stress). For the large-radius core the third peak is completely eliminated. Note that although the

third peak is smaller in magnitude than the two previous ones, it is the only considerable tensile stress at the head point.

Thus, the large-radius core significantly reduces tensile stress at the head point. This result appears to be of interest for

materials reacting differently to tension and compression. Note also that although the third peak is completely

eliminated, another tensile peak, which is not present in other cases, is originated at �t � 1:4. For �tX3:5 the stresses in
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Fig. 7. Dynamics of the normal displacement for the shell without a core.
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Fig. 8. Dynamics of the normal displacement for the shell with the large-radius core.
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the shell without a core and in the shells with the small- and medium-radius cores are very similar, whereas the stress in

the shell with the large-radius core has a considerably lower magnitude.

It is also of interest to look at the distribution of the maximum stress magnitude over the entire shell surface. Fig. 11

shows the maximum magnitude of the transverse stress in each cross-section of the shell. As one can see, the most

stressed cross-section is the middle one ( �x ¼ 0), and this is true for all four systems. The maximum stresses are identical

in the proximity of �x ¼ 0 (�3p �xp3), but at larger �x they start to differ. Although these differences can be locally

significant, their global effect it is not very important (local maxima at j �xj43 are always much lower than the maximum
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at �x ¼ 0). Thus, we can state that when the global maximum of the transverse stress is the primary concern, the analysis

should be focused on the middle cross-section. However, if the detailed study of the stress dynamics is being carried out,

the stress state of the entire shell should be examined.

If the analysis of the spatial distribution of the maximum stress provides one with the information about the most

stressed zones of the structure, the study of the distribution of the maximum stress in time allows for a better

understanding of the complex dynamics of the stress state. Fig. 12 shows the absolute maximum of the magnitude

of the transverse stress computed over the entire shell surface versus time. This plot is very informative, first
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of all because it clearly illustrates the major dynamic features of the interaction. In particular, for the shell without a

core, one can see three distinct peaks of the stress, each caused by a different physical phenomenon. The first peak

at �t � 0:5 is caused by the direct action of the shock wave, the second at �t � 1:1 is caused by the superposition

(at the tail point) of the elastic waves propagating in the shell, and the third one at �t � 2:2 is caused by the

hydrodynamic wave propagating in the internal fluid. All three peaks have approximately the same magnitude

(the difference does not exceed 5%). Note that, once again, this allows us to state that the maximum stress in

fluid-interacting thin-walled cylindrical structures can be caused by any of the three mentioned phenomena, and

the maximum can occur at virtually any time between dimensionless 0 and 2.5, depending on the parameters

of the system. A very similar situation is observed for the shells with the small- and medium-radius cores. However,

for these systems, the third peak is about 10% lower than the first two. In the case of the large-radius core the

first two peaks are the same, whereas, because of the reasons outlined above, the third peak is no longer

present.

Thus, the influence that a core has on the stress state of the shell is quite clear now, and we can conclude that a core

only affects the third (‘hydrodynamics-driven’) peak. This happens because the first two peaks occur before the

influence of a core becomes significant enough to cause any noticeable changes in the stress state. Note that Fig. 12 only

shows the magnitude of the stress whereas in reality the first two peaks are negative (compressive stress), and the third

one is positive (tensile stress).

Figs. 13 and 14 show the three-dimensional dynamics of the transverse stress in the shells without and with a core,

respectively. Fig. 15 shows the details of the dynamics of the shell containing the large-radius core when the first core-

reflected wave arrives at the head point. These two-dimensional ‘snapshots’ of an ‘unwrapped’ shell allow one

to examine dynamic features that were not captured by other plots. In particular, one can see how the stress states start

to differ when the first core-reflected wave arrives at the head point. Also, in the case of the large-radius core, one can

see how this wave causes a significant area of tensile stress in the proximity of the head point at �t � 1:3–1.6. At the
larger times the distribution of the stress is quite complex in all cases considered, and it becomes particularly irregular

when a core is present.

Finally, Figs. 16 and 17 show the dynamic distribution of the magnitude of the transverse stress over the three-

dimensional surface of the shell (the core is not shown). These figures are intended to complement the plots showing the

‘unwrapped’ shell (Figs. (13)–(15)) rather than replace them. The reds represent the highest magnitudes, and the blues

show the magnitudes close to zero. Since the focus was on dynamic features rather than on quantitative analysis, the

colors were assigned to stress magnitudes separately for each ‘snapshot’.

A few previously discussed dynamic features are particularly obvious now. For example, it is easy to analyze the

effect that the first core-reflected wave has on the stress state of the shell. After the wave arrives at the head point at
�t � 1, it originates a ‘second-order’ wave of stress with a very pronounced circular front (�t � 1:20–1.35, the ‘circular’
nature of the wave front is particularly apparent at �t � 1:30–1.35). This wave interferes with the high-magnitude stress

wave originated at the tail point and propagating in the direction of the head point (�t � 1:40–1.55). As a result, the

‘circular’ wave splits into two waves, one continuing to travel towards the tail point, and the other reversing back to

the head point (�t � 1:55–1.65). The latter wave collapses as it reaches the head point at �t � 1:75. At approximately the
same time, the high-magnitude stress waves coming from the tail point reach the head point as well. The waves

constructively superpose which leads to a relatively high-magnitude stress at �t � 1:85–2.05. Finally, one can notice the

arrival at the head point of the second core-reflected wave at �t � 2:10–2.25. Even though the amplitude of the

corresponding stress wave is not nearly as high as that of the stress wave originated by the first core-reflected wave, this

dynamic feature deserves some attention.
6. Conclusions

We have considered a thin submerged fluid-filled circular cylindrical shell containing a coaxial rigid cylindrical core

and subjected to a spherical shock wave. There was a possibility that a core, even a small-radius one, will ‘de-focus’ the

waves in the internal fluid and therefore will lead to a significant reduction of the maximum stress. The study carried out

shows that this does not happen for small- and medium-radius cores (a=r0p0:25). The stress reduction does not exceed
10% in such cases. However, a large-radius core (a=r0X0:40) does lead to a significant (35% for a=r0 ¼ 0:50) reduction
of the stress caused by the hydrodynamic effects in the internal fluid. It appears that a large-radius core ‘dissipates’ the

hydrodynamic waves in the internal fluid, whereas small- and medium-radius cores seem to just slightly ‘re-distribute’

the influence of the internal hydrodynamic shock load. In a way, it seems that the internal fluid works as a wave-guide

which is very stable to local disturbances. The fluid layer between the shell and the core ‘conducts’ the hydrodynamic

load with minimal losses even when the radius of the core is 25% of that of the shell. This result is somewhat the
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Fig. 13. Dynamics of the transverse stress in the shell without a core.
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opposite of what was expected (‘small-disturbance/large-stress-reduction’). This interesting feature of the system

‘shell-fluid-core’ should certainly be taken into consideration when one is designing constructively advanced systems

involving shells and fluids.
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Fig. 14. Dynamics of the transverse stress in the shell with the large-radius core.

S. Iakovlev / Journal of Fluids and Structures 19 (2004) 957–984980



ARTICLE IN PRESS

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.02

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.08

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.14

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.18

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.20

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.22

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.26

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.34

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3
�

−60

20

MPa

1.36

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.40

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.46

−3 −2 −1 0 1 2 3
x

−3

−2

−1

0

1

2

3

�

−60

20

MPa

1.50

Fig. 15. Dynamics of the transverse stress in the shell with the large-radius core, t ¼ 1–1.5.
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Fig. 16. Three-dimensional dynamics of the transverse stress in the shell with the large-radius core, t ¼ 0:00–1.50 (the core is not

shown).
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Fig. 17. Three-dimensional dynamics of the transverse stress in the shell with the large-radius core, t ¼ 1:50–2.25 (the core is not

shown).
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From a constructive point of view, the advantages of placing a core inside a shell are, unfortunately, not as obvious as

we had hoped. One would be faced with a compromise should one decide to use a rigid core as a constructive measure of

safety improvement. Namely, although a large-radius core does provide a considerable reduction of the maximum

tensile stress, it also consumes a significant amount of the internal space. However, in some cases this would not be a

serious obstacle since often the interior of the core can be efficiently utilized (e.g. it can accommodate equipment, wires

etc.). In such cases, a large-radius core appears to be quite a beneficial constructive decision.

In summary, we can conclude that a rigid coaxial core has a significant (and safety-wise beneficial) influence on the

stress state of a shell only if the radius of the core exceeds 40% of that of the shell.
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